Crie um plano de estudos grátis no Planejativo e mande bem no ENEM 2022!
MT MAT-BAS Matemática Básica
Critérios de divisibilidade e Números primos

1. Critérios de divisibilidade

Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios de divisibilidade.

a) Divisibilidade por 2

Um número natural é divisível por 2 quando ele termina em 0, ou 2, ou 4, ou 6, ou 8, ou seja, quando ele é par.

Exemplos:
1) 5040 é divisível por 2, pois termina em 0.
2) 237 não é divisível por 2, pois não é um número par.

b) Divisibilidade por 3

Um número é divisível por 3 quando a soma dos valores absolutos dos seus algarismos for divisível por 3.

Exemplo:
234 é divisível por 3, pois a soma de seus algarismos é igual a 2+3+4=9, e como 9 é divisível por 3, então 234 é divisível por 3.

c) Divisibilidade por 4

Um número é divisível por 4 quando termina em 00 ou quando o número formado pelos dois últimos algarismos da direita for divisível por 4.

Exemplo:
1800 é divisível por 4, pois termina em 00.
4116 é divisível por 4, pois 16 é divisível por 4.
1324 é divisível por 4, pois 24 é divisível por 4.
3850 não é divisível por 4, pois não termina em 00 e 50 não é divisível por 4.

d) Divisibilidade por 5

Um número natural é divisível por 5 quando ele termina em 0 ou 5.

Exemplos:
1) 55 é divisível por 5, pois termina em 5.
2) 90 é divisível por 5, pois termina em 0.
3) 87 não é divisível por 5, pois não termina em 0 nem em 5.

e) Divisibilidade por 6

Um número é divisível por 6 quando é divisível por 2 e por 3.

Exemplos:
1) 312 é divisível por 6, porque é divisível por 2 (par) e por 3 (soma: 6).
2) 5214 é divisível por 6, porque é divisível por 2 (par) e por 3 (soma: 12).
3) 716 não é divisível por 6, (é divisível por 2, mas não é divisível por 3).
4) 3405 não é divisível por 6 (é divisível por 3, mas não é divisível por 2).

f) Divisibilidade por 8

Um número é divisível por 8 quando termina em 000, ou quando o número formado pelos três últimos algarismos da direita for divisível por 8.

Exemplos:
1) 7000 é divisível por 8, pois termina em 000.
2) 56104 é divisível por 8, pois 104 é divisível por 8.
3) 61112 é divisível por 8, pois 112 é divisível por 8.
4) 78164 não é divisível por 8, pois 164 não é divisível por 8.

g) Divisibilidade por 9

Um número é divisível por 9 quando a soma dos valores absolutos dos seus algarismos for divisível por 9.

Exemplo:
2871 é divisível por 9, pois a soma de seus algarismos é igual a 2+8+7+1=18, e como 18 é divisível por 9, então 2871 é divisível por 9.

h) Divisibilidade por 10

Um número natural é divisível por 10 quando ele termina em 0.

Exemplos:
1) 4150 é divisível por 10, pois termina em 0.
2) 2106 não é divisível por 10, pois não termina em 0.

i) Divisibilidade por 11

Estudando o critério de divisibilidade por 11, um processo interessante e que facilita o trabalho na fatoração por números primos.


O critério de divisibilidade por 11 necessita de organização e maior compreensão do processo que deve ser realizado para sabermos a divisibilidade de um número por 11.


Os múltiplos por 11, rapidamente extrapolam as casas das centenas, portanto podemos nos deparar com números que possuem diversos algarismos, contudo com o processo de verificação da divisibilidade por 11, buscará um meio que utilize uma quantidade menor de algarismos para esta verificação.


“Um número é divisível por 11, caso a soma dos algarismos de ordem par subtraídos da soma dos algarismos de ordem ímpar, resultar em um número divisível por 11. Caso o resultado seja igual a 0, pode-se afirmar também que é divisível por 11.”


Devemos compreender o que é dito como ordem par e ordem ímpar, pois pode surgir a confusão que o que deve ser feito é “somar os números pares e somar os números ímpares”, mas não é isso que é pedido. Ordem par e ordem ímpar diz respeito a ordem dos algarismos do número, partindo da esquerda para direita. Façamos uma tabela com a ordem dos algarismos do número: 2376.



Conforme vimos no critério de divisibilidade, devemos somar os algarismos que correspondem a ordem ímpar, e subtrair da soma dos algarismos de ordem par. Façamos este processo:



Faça a subtração da soma dos algarismos de ordem par pela soma dos algarismos de ordem ímpar. Caso o resultado seja negativo inverta essa subtração para: (Soma dos algarismos de ordem ímpar subtraídos pela soma dos algarismos de ordem par). Nesta situação não nos importa o sinal obtido, queremos apenas verificar se este resultado é de fato divisível por 11.



Como foi visto anteriormente, caso o resultado seja zero podemos afirmar que o número que está sendo verificada a divisibilidade por 11 é de fato divisível pelo número 11, ou seja, 2376 é divisível por 11.


Façamos outro exemplo. Verifique se o número 12574 é divisível por 11.




Como não é possível dividir 1 por 11, temos que o número 12574 não é divisível por 11.


j) Divisibilidade por 12

Um número é divisível por 12 quando é divisível por 3 e por 4.

Exemplos:
1) 720 é divisível por 12, porque é divisível por 3 (soma=9) e por 4 (dois últimos algarismos, 20).
2) 870 não é divisível por 12 (é divisível por 3, mas não é divisível por 4).
3) 340 não é divisível por 12 (é divisível por 4, mas não é divisível por 3).

k) Divisibilidade por 15

Um número é divisível por 15 quando é divisível por 3 e por 5.

Exemplos:
1) 105 é divisível por 15, porque é divisível por 3 (soma=6) e por 5 (termina em 5).
2) 324 não é divisível por 15 (é divisível por 3, mas não é divisível por 5).
3) 530 não é divisível por 15 (é divisível por 5, mas não é divisível por 3).

l) Divisibilidade por 25

Um número é divisível por 25 quando os dois algarismos finais forem 00, 25, 50 ou 75.

Exemplos:
200, 525, 850 e 975 são divisíveis por 25.

2. Números primos

Números primos são os números naturais que têm apenas dois divisores diferentes: o 1 e ele mesmo.

Exemplos:

1) 2 tem apenas os divisores 1 e 2, portanto 2 é um número primo.
2) 17 tem apenas os divisores 1 e 17, portanto 17 é um número primo.
3) 10 tem os divisores 1, 2, 5 e 10, portanto 10 não é um número primo.

Observações:
1 não é um número primo, porque ele tem apenas um divisor que é ele mesmo.
é o único número primo que é par.

Os números que têm mais de dois divisores são chamados números compostos.
Exemplo: 15 tem mais de dois divisores => 15 é um número composto.

a) Reconhecimento de um número primo

Para saber se um número é primo, dividimos esse número pelos números primos 2, 3, 5, 7, 11, etc, até que tenhamos:
- ou uma divisão com resto zero (e neste caso o número não é primo),
- ou uma divisão com quociente menor que o divisor e o resto diferente de zero. Neste caso o número é primo.

Exemplos:

1) O número 161:

  • não é par, portanto não é divisível por 2;
  • 1+6+1 = 8, portanto não é divisível por 3;
  • não termina em 0 nem em 5, portanto não é divisível por 5;
  • por 7:  161 / 7 = 23, com resto zero, logo 161 é divisível por 7, e portanto não é um número primo.

2) O número 113:

  • não é par, portanto não é divisível por 2;
  • 1+1+3 = 5, portanto não é divisível por 3;
  • não termina em 0 nem em 5, portanto não é divisível por 5;
  • por 7:  113 / 7 = 16, com resto 1. O quociente (16) ainda é maior que o divisor (7).
  • por 11:  113 / 11 = 10, com resto 3. O quociente (10) é menor que o divisor (11), e além disso o resto é diferente de zero (o resto vale 3), portanto 113 é um número primo.

b) Decomposição em fatores primos

Todo número natural, maior que 1, pode ser decomposto em um produto de dois ou mais fatores.

Decomposição do número 24 em um produto:
24 = 4 x 6
24 = 2 x 2 x 6
24 = 2 x 2 x 2 x 3 = 23 x 3

No produto 2 x 2 x 2 x 3, todos os fatores são primos.

Chamamos de fatoração de 24 a decomposição de 24 em um produto de fatores primos. Então a fatoração de 24 é 23 x 3.

De um modo geral, chamamos de fatoração de um número natural, maior
que 1, a sua decomposição em um produto de fatores primos.Regra prática para a fatoração

Existe um dispositivo prático para fatorar um número. Acompanhe, no exemplo, os passos para montar esse dispositivo:

1º) Dividimos o número pelo seu menor divisor primo;

2º) a seguir, dividimos o quociente obtido pelo menor divisor primo desse quociente e assim sucessivamente até obter o quociente 1.

A figura mostra a fatoração do número 630.

Decomposição

Então 630 = 2 x 3 x 3 x 5 x 7.
630 = 2 x 32 x 5 x 7.

c) Determinação dos divisores de um número

Na prática, determinamos todos os divisores de um número utilizando os seus fatores primos. Vamos determinar, por exemplo, os divisores de 90:

1º) decompomos o número em fatores primos;

2º) traçamos uma linha e escrevemos o 1 no alto, porque ele é divisor de qualquer número;

3º) multiplicamos sucessivamente cada fator primo pelos divisores já obtidos e escrevemos esses produtos ao lado de cada fator primo;

4º) os divisores já obtidos não precisam ser repetidos.

Portanto os divisores de 90 são 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90.


Fontes:

Só Matemática - Divisores de um número
Só Matemática - Critérios de divisibilidade
Só Matemática - Decomposição em fatores primos
Só Matemática - Números primos
Escola Kids - Divisibilidade por 11

Conteúdo relacionado
Avalie esse material
0
Compartilhe
Página carregada em 0.0074 segundos.